
SCALAPACKFX
Release 1.2.0

B. Aradi

Jun 30, 2023





Contents

1 About SCALAPACKFX 1

2 Compiling and installing SCALAPACKFX 3

3 Using SCALAPACKFX 5

4 List of routines 7

5 License 9

i



ii



Chapter 1
About SCALAPACKFX

SCALAPACKFX is a library containing modern Fortran (Fortran 2003) wrappers around SCALAPACK, PBLAS
and BLACS routines. The goal is to make the use of those libraries as simple as possible in Fortran.

Consider for example a simple broadcast in BLACS. In order to broadcast an integer array (aa) with 5x5 elements
using the appropriate BLACS routine, you have to issue:

call igebs2d(ictxt, "All", " ", 5, 5, aa, 5)

Additional to the object to be broadcasted and the communicator, you also must specify following arguments:

• type of the array as first letter of the subroutine name (although it is known at compile-time)

• number of row, number of columns and leading dimension of the array (although those are known at run-
time)

• scope of the broadcast (could be optional as very often it is “All” any way)

• communcation pattern for the broadcast (could be optional as very often ” ” is used)

Using SCALAPACKFX the call above is as simple as:

call blacsfx_gebs(mygrid, aa)

No redundant arguments, sensible defaults. Nevertheless the full functionality still available via optional parame-
ters if needed. E.g. if you wanted to the scope, you could write:

call blacsfx_gebs(mygrid, aa, scope="Row")

Also, the array aa does not have to be a rank two array, it can be also rank one (vector) or rank zero (scalar).

A few routines are already covered (see List of routines (page 7)). If your desired routine is not among them yet,
you are cordially invited to extend SCALAPACKFX and to share it in order to let others profit from your work
(SCALAPACKFX is licensed under the simplified BSD license). For more details see the project home page.

1

https://github.com/dftbplus/scalapackfx
https://github.com/dftbplus/scalapackfx


SCALAPACKFX, Release 1.2.0

2 Chapter 1. About SCALAPACKFX



Chapter 2
Compiling and installing SCALAPACKFX

In order to compile SCALAPACKFX, you need following prerequisites:

• Fortran 2003 compiler*0,

• GNU M4 macro interpreter,

• GNU Make.

There are basically two different ways of using the library in your project:

• Precompiling the library (page 3) and linking it later to your project.

• Compiling the library during your build process (page 4).

Both are described below.

2.1 Precompiling the library

In order to create a precompiled library

1. Copy the file make.arch.template to make.arch in the root directory of the source and customize the settings
for the compilers and the linker according to your system.

2. Change to the src/ folder.

3. Issue make to build the library.

4. Copy all module files (usually ending on .mod and the library libscalapackfx.a to a place, where your Fortran
compiler and your linker can recognize them.

During the build process of your project, you may link the library with the -lscalapackfx option. Eventually,
you may need to specify options for your compiler and your linker to specify the location of those directories.
Assuming you’ve put the module files in the directory <MODFILEDIR> and the library file in <LIBRARYDIR>,
you would typically invoke your compiler for the source files using the libscalapackfx_module as:

F2003_COMPILER -I<MODFILEDIR> -c somesource.f90

and link your object files at the end with:

LINKER -I<LIBRARYDIR> somesource.o ... -L<LIBRARYDIR> -lscalapackfx

0 GNU Fortran 4.9 (earlier versions may not work!), NAG Fortran 5.3.1 and Intel Fortran 12.1 seem to work.

3



SCALAPACKFX, Release 1.2.0

2.2 Compiling the library during your build process

In order to build the library during the build process of your project:

1. Copy the content of the src/ folder into a separate folder within your project.

2. During the make process of your project, invoke the library makefile (Makefile.lib) to build the module files
and the library in the folder where you’ve put the library sources.

You must pass the compiler and linker options via variable defintions at the make command line. Assuming
that the variables $(FXX), $(FXXOPT), $(LN) and $(LNOPT), $(M4) and $(M4OPT) contain the Fortran
compiler, the Fortran compiler options, the linker, the linker options, the M4 preprocessor and its options,
respectively, you would have something like:

$(SCALAPACKFX_SRCDIR)/libscalapackfx.a:
$(MAKE) -C $(SCALAPACKFX_SRCDIR) \

FXX="$(FXX)" FXXOPT="$(FXXOPT)" \
LN="$(LN)" LNOPT="$(LNOPT)" \
M4="$(M4)" M4OPT="$(M4OPT)" \
-f Makefile.lib

in the makefile of your project with $(SCALAPACKFX_SRCDIR) being the directory where you’ve put the
source of SCALAPACKFX.

You should also have a look at the GNUmakefile in the test/ folder of SCALAPACKFX, which uses exactly the
same technique to compile the library during the build process for the tests.

4 Chapter 2. Compiling and installing SCALAPACKFX



Chapter 3
Using SCALAPACKFX

Before you can use the SCALAPACKFX routines, you need basically the following two steps.

1. Import the module libscalapackfx_module in your routines.

2. Initialize a grid for the BLACS-communcation using type(blacsgrid).

Below you find an example draft for reading in a matrix from a file, distributing it across the processes and finally
diagonalizing it:

program test_diag
use libscalapackfx_module

integer, parameter :: nprow = 4, npcol = 4 ! process rows/cols
integer, parameter :: bsize = 64 ! block size
integer, parameter :: nn = 1000 ! matrix size

type(blacsgrid) :: mygrid ! BLACS grid descriptor
real(dp), allocatable :: aa(:,:), bb(:,:), eigvecs(:,:), eigvals(:)
integer :: desc(DLEN_) ! matrix descriptor
integer :: mloc, nloc ! nr. of local rows/columns of the matrices
type(linecomm) :: distr ! distributes matrix when read
real(dp), allocatable :: iobuffer(:) ! buffer during read

! Initialize your BLACS grid
call mygrid%gridinit(nprow, npcol)

! Allocate the local part of the distributed matrices
call scalafx_getdescriptor(mygrid, nn, nn, bsize, bsize, desc)
call scalafx_getlocalshape(mygrid, desc, mloc, nloc)
allocate(aa(mloc, nloc))
allocate(bb(mloc, nloc))
allocate(eigvecs(mloc, nloc))
allocate(eigvals(nn))
...
! Here comes the code which distributes your matrix
! You can use the linecomm type to distribute it if you read it from file
if (mygrid%lead) then

allocate(iobuffer(nn))
end if
call distr%init(desc, "c")
do icol = 1, nn
if (mygrid%lead) then

read(12, *) iobuffer(:)
call distr%setline_lead(mygrid, icol, iobuffer, aa)

(continues on next page)

5



SCALAPACKFX, Release 1.2.0

(continued from previous page)

else
call distr%setline_follow(mygrid, icol, mtxloc)

end if
end do
...
! Get eigenvalues (on all nodes) and eigenvectors (distributed)
call psygvd(aa, desc, bb, desc, eigvals, eigvecs, desc, jobz="V", uplo="L")
...

end program test_diag

Have a look at the test folder in the source tree for further examples.

6 Chapter 3. Using SCALAPACKFX



Chapter 4
List of routines

You can generate the list and the description of the SCALAPACKFX routines via doxygen (see folder
doc/doxygen/ in the source tree) or examples as sphix documentation.

7



SCALAPACKFX, Release 1.2.0

8 Chapter 4. List of routines



Chapter 5
License

SCALAPACKFX is licensed under the simplified BSD license:

Copyright (c) 2013, Bálint Aradi

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

9


	About SCALAPACKFX
	Compiling and installing SCALAPACKFX
	Using SCALAPACKFX
	List of routines
	License

